

Sampling for 1,4-Dioxane and Per- and Polyfluoroalkyl Substances (PFAS) Under DEC's Part 375 Remedial Programs

Objective

The Department of Environmental Conservation (DEC) is requiring sampling of all environmental media and subsequent analysis for the emerging contaminants 1,4-Dioxane and PFAS as part of all remedial programs implemented under 6 NYCRR Part 375, as further described in the guidance below.

Sample Planning

The number of samples required for emerging contaminant analyses is to be the same number of samples where "full TAL/TCL sampling" would typically be required in an investigation or remedial action compliance program.

Upon a new site being brought into any program (e.g., SSF, BCP), PFAS and 1,4-dioxane will be incorporated into the investigation of potentially affected media, including soil, groundwater, surface water, and sediment as an addition to the standard "full TAL/TCL sampling." Biota sampling may be necessary based upon the potential for biota to be affected as determined pursuant to a Fish and Wildlife Impact analysis. Soil vapor sampling for PFAS and 1,4-dioxane is not required.

Upon an emerging contaminant being identified as a contaminant of concern (COC) for a site, those compounds must be assessed as part of the remedy selection process in accordance with Part 375 and DER-10 and included as part of the monitoring program upon entering the site management phase.

Soil imported to a site for use in a soil cap, soil cover, or as backfill must be sampled for 1,4-dioxane and PFAS contamination in general conformance with DER-10, section 5.4(e). Assessment of the soil data will be made on a site-specific basis to determine appropriateness for use.

The work plan should explicitly describe analysis and reporting requirements, including laboratory analytical procedures for modified methods discussed below.

Analysis and Reporting

Labs should provide a full category B deliverable, and a DUSR should be prepared by an independent 3rd party data validator. QA/QC samples should be collected as required in DER-10, Section 2.3(c). The electronic data submission should meet the requirements provided at: https://www.dec.ny.gov/chemical/62440.html.

<u>PFAS analysis and reporting:</u> DEC has developed a *PFAS Analyte List* (below) for remedial programs. It is expected that reported results for PFAS will include, at a minimum, all the compounds listed. If lab and/or matrix specific issues are encountered for any compounds, the DEC project manager, in consultation with the DEC remedial program chemist, will make case-by-case decisions as to whether certain analytes may be temporarily or permanently discontinued from analysis at each site.

Currently, ELAP does not offer certification for PFAS compounds in matrices other than finished drinking water. However, laboratories analyzing environmental samples (e.g., soil, sediments, and groundwater) are required by DER to hold ELAP certification for PFOA and PFOS in drinking water by EPA Method 537 or ISO 25101.

Modified EPA Method 537 is the preferred method to use for environmental samples due to its ability to achieve very low detection limits. Reporting limits for PFAS in groundwater and soil are to be 2 ng/L (ppt) and 1 ug/kg (ppb), respectively. If contract labs or work plans submitted by responsible parties indicate that they are not able to achieve these reporting limits for the entire list of 21 PFAS, site-specific decisions will need to be made by the DEC project manager in consultation with the DEC remedial program chemist. Note: Reporting limits for PFOA and PFOS in groundwater should not exceed 2 ng/L.

Additional laboratory methods for analysis of PFAS may be warranted at a site. These methods include Synthetic Precipitation Leaching Procedure (SPLP) by EPA Method 1312 and Total Oxidizable Precursor Assay (TOP Assay).

SPLP is a technique for determining the potential for chemicals in soil to leach to groundwater and may be helpful in determining the need for addressing PFAS-containing soils or other solid material as part of the remedy. SPLP sampling need not be considered if there are no elevated PFAS levels in groundwater. If elevated levels of PFAS are detected in water, and PFAS are also seen in soil, then an SPLP test should be considered to better understand the relationship between the PFAS in the two media.

The TOP Assay can assist in determining the potential PFAS risk at a site. For example, some polyfluoroalkyl substances may transform to form perfluoroalkyl substances, resulting in an increase in perfluoroalkyl substance concentrations as contaminated groundwater moves away from the site. To conceptualize the amount and type of oxidizable perfluoroalkyl substances which could be liberated in the environment, a "TOP Assay" analysis can be performed, which approximates the maximum concentration of perfluoroalkyl substances that could be generated if all polyfluoroalkyl substances were oxidized.

PFAS-containing materials can be made up of per- and polyfluoroalkyl substances that are not analyzable by routine analytical methodology (LC-MS/MS). The TOP assay converts, through oxidation, polyfluoroalkyl substances (precursors) into perfluoroalkyl substances that can be detected by current analytical methodology. Please note that analysis of highly contaminated samples, such as those from an AFFF site, can result in incomplete oxidation of the samples and an underestimation of the total perfluoroalkyl substances. Please consult with a DEC remedial program chemist for assistance interpreting the results.

 $\underline{1,4\text{-Dioxane}}$ analysis and reporting: The reporting limit for 1,4-dioxane in groundwater should be no higher than 0.35 µg/L (ppb) and no higher than 0.1 mg/kg (ppm) in soil. Although ELAP offers certification for both EPA Method 8260 SIM and EPA Method 8270 SIM in waters, DER is advising the use of Method 8270 SIM because it provides a more robust extraction procedure, uses a larger sample volume, and is less vulnerable to interference from chlorinated solvents. The analysis currently performed for SVOCs in soil is adequate for evaluation of 1,4-dioxane in soil, which already has an established SCO.

Refinement of sample analyses

As with other contaminants that are analyzed for at a site, the emerging contaminant analyte list may be refined for future sampling events based on investigative findings. Initially, however, sampling using this PFAS Analyte List and 1,4-dioxane is needed to understand the nature of contamination.

PFAS Analyte List

Group	Chemical Name	Abbreviation	CAS Number
Perfluoroalkyl sulfonates	Perfluorobutanesulfonic acid	PFBS	375-73-5
	Perfluorohexanesulfonic acid	PFHxS	355-46-4
	Perfluoroheptanesulfonic acid	PFHpS	375-92-8
	Perfluorooctanessulfonic acid	PFOS	1763-23-1
	Perfluorodecanesulfonic acid	PFDS	335-77-3
Perfluoroalkyl carboxylates	Perfluorobutanoic acid	PFBA	375-22-4
	Perfluoropentanoic acid	PFPeA	2706-90-3
	Perfluorohexanoic acid	PFHxA	307-24-4
	Perfluoroheptanoic acid	PFHpA	375-85-9
	Perfluorooctanoic acid	PFOA	335-67-1
	Perfluorononanoic acid	PFNA	375-95-1
	Perfluorodecanoic acid	PFDA	335-76-2
	Perfluoroundecanoic acid	PFUA/PFUdA	2058-94-8
	Perfluorododecanoic acid	PFDoA	307-55-1
	Perfluorotridecanoic acid	PFTriA/PFTrDA	72629-94-8
	Perfluorotetradecanoic acid	PFTA/PFTeDA	376-06-7
Fluorinated Telomer Sulfonates	6:2 Fluorotelomer sulfonate	6:2 FTS	27619-97-2
	8:2 Fluorotelomer sulfonate	8:2 FTS	39108-34-4
Perfluorooctane- sulfonamides	Perfluroroctanesulfonamide	FOSA	754-91-6
Perfluorooctane-	N-methyl perfluorooctanesulfonamidoacetic acid	N-MeFOSAA	2355-31-9
sulfonamidoacetic acids	N-ethyl perfluorooctanesulfonamidoacetic acid	N-EtFOSAA	2991-50-6